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Abstract: Tracking the evolution of hybrid systems from partial observations means tracking
the continuously-valued state evolution and the interleaved discrete mode changes. Existing
estimation schemes suffer from the exponential blow up of the number of hypotheses to be
tracked and fall into suboptimal methods. On the other hand, hybrid parity-based mode
estimation ignores the continuous state. This paper proposes a novel scheme that uses this
latter as a mode focusing procedure and then applies hybrid estimation on the resulting reduced
number of hypotheses. The advantages of the mixed method are on both sides: it boosts the
mode identification time and the convergence of continuous state estimation.
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1. INTRODUCTION

Many modern artifacts, mobile robotic devices, space
probes, or production plants exhibit complex patterns of
behavior in order to satisfy the high demand on perfor-
mance and durability. Key for the physical system’s oper-
ation is a sophisticated control and automation scheme
that actuates the evolution of the system through its
many modes of operation and reacts appropriately when-
ever faults occur. A detailed knowledge of the current
mode of operation/failure and the current state of the
physical entities that capture the continuous evolution of
the physical system are important prerequisites for this
automation/control task. However, it is almost always the
case that the current mode and the full continuous state
is not directly observable/measurable so that the missing
information has to be inferred from the known actuation,
available measurements and a mathematical model of the
physical system.

Hybrid Systems theory provides a modeling paradigm that
integrates both, the continuously-valued state evolution
and the interleaved discrete mode changes in a comprehen-
sive manner. Using such a model to track the complex evo-
lution of a physical system requires, in theory, to consider
every possible mode sequence with its associated continu-
ous evolution. This requires one to perform both, the mode
estimation and the continuous state estimation (filtering)
in an interwoven form. It is easy to see that the demand
to consider all estimation hypotheses is computationally
� This work was supported in part by the Austrian Science Fund
(FWF) under contract P20041-N15 and through Alenia Space,
France.

infeasible due to the resulting (exponential) complexity.
As a consequence, many sub-optimal estimation schemes
were proposed in the literature, for example, the wide
field of multi-model filtering (Ackerson and Fu [1970],
Blom and Bar-Shalom [1988], Li and Bar-Shalom [1996]),
particle filtering methods (de Freitas [2002], Verma et al.
[2004], Narasimhan et al. [2004]) or recently developed
hybrid estimation methods (Hofbaur and Williams [2002],
Benazera et al. [2002], Narasimhan and Biswas [2002]) that
can deal with complex systems that evolve according to a
large number of modes (l > 1,000).

As mentioned above, one has to consider together the dis-
crete estimation task that operates on the mode evolution
structure of the hybrid model and the continuous esti-
mation task that utilizes the mode-dependent continuous
model. Discrete-continuous coupling is the major source of
computational complexity of the hybrid estimation task.

In order to un-couple the two estimation tasks we propose
to perform continuous estimation in two (redundant) ways.
Firstly, we apply a parity-space based diagnosis technique
(Bayoudh et al. [2008b]) that operates on the continuously
valued input/output data. It provides a (mode) consis-
tency information whilst ignoring the continuous state.
This supplies a fine-grain abstraction of the continuous
evolution that can be used for mode estimation through a
discrete-event diagnoser. This diagnoser deduces a mode
estimate in the form of a focused set of possible modes.
In a second stage we perform an additional continuous
estimation scheme that provides the neglected continuous
state estimate through a traditional filtering based hybrid
estimation technique (Hofbaur and Williams [2002]) that
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can now operate on a significantly smaller set (ideally a
singleton set) of possible modes.

2. HYBRID MODEL

We define the model of a hybrid system through a hy-
brid automaton that combines a discrete event system
(automaton) with continuous dynamics in spirit of the def-
initions in Henzinger [1996], Hofbaur and Williams [2004],
and Bayoudh et al. [2008b] through the tuple

S = (ζ, Q, Σ, T, C, (Q0, ζ0)), (1)
where:

• ζ is the set of continuous variables, which includes
nu (exogenous) input variables {u1, . . . , unu} =: u,
nx state variables {x1, . . . , xnx} =: x that capture
the dynamic evolution of the automaton, and ny

output variables {y1, . . . , yny} =: y that represent the
continuous measurements.

• Q = {q1, . . . , ql} is the set of discrete states. Each
state qi ∈ Q represents a mode of operation, possibly
a failure mode, of the system.

• Σ is the set of events. Events correspond to command
value switches, spontaneous mode changes and fault
events. The subset ΣO ∈ Σ denotes the observable
events. Without loss of generality, we assume that
fault events are unobservable.

• T is the transition function T : Q × Σ → Q that
captures the discrete evolution of the model.

• C represents the set of system constraints that link
the continuous variables. It represents a set of (or-
dinary) differential/difference equations along with
algebraic equations for each mode qi ∈ Q and thus
defines the continuously-valued evolution of the au-
tomaton.

• (Q0, ζ0) ⊂ Q×ζ specifies the initial state information

When dealing with the discretely-valued part of the hybrid
automaton we denote the associated discrete event sys-
tem (DES) through M := (Q, Σ, T, Q0). Analogously, we
denote the underlying continuously-valued part through
the (multi-mode) system Ξ := (ζ, Q, C, ζ0). For the scope
of this paper, we use a discrete-time linear model with
sampling period Ts that associates each mode qi ∈ Q with
a difference equation

xk+1 = Aixk + Biuk + Nivk (2)
and an algebraic equation that defines the measurements
through

yk = Cixk + Diuk + Mivk, (3)
where xk,uk and yk denote the valuation of the state,
input and output variable at time t = kTs, respectively.
The variable v := [v 1, . . . , vnx+ny ]T defines state noise
(v 1, . . . , vnx) and measurement noise (vnx+1, . . . , vnx+ny)
through bounded, zero mean noise with |vh,k | ≤ 1. The
possibly mode-specific magnitude of the disturbances is
specified through the scaling vectors ni and mi that define
the noise matrices Ni = [diag(ni),0], Mi = [0, diag(mi)]
which select and scale the appropriate fraction of v.

We use the hybrid system’s assumption that mode changes
take place infrequently and instantly, i.e. the mode evolves,
compared to the continuously-valued evolution at a slower
rate. As a consequence it is legitimate to assume that
only one mode change takes place within one sampling

q2
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q3

q4

uo2uo1
uo3

uo4 uo5

o1

Fig. 1. Discrete automaton with four operational modes
and six possible mode transitions.

period. In terms of estimation we restrict this assumption
even further and assume that an event takes place at a
particular sampling time-point. As a consequence, we will
use the discrete variable e to track the observable events.
Its valuation at a time-step k will be denoted through
ek ∈ {ΣO, ε}, where ε stands for no observable event.

2.1 Illustrative Example

Our framework is illustrated on the basis of a hybrid
system with four modes of operation Q = {q1, q2, q3, q4}.
We define mode transitions through one observable event
ΣO = {o1} and five unobservable events uo1, uo2, uo3 uo4

and uo5 as depicted in Figure 1. The underlying continuous
dynamics in equations (2 - 3) are defined through

A1 =

[0.7 0 0
0 0.7 −0.1
0 −0.1 0.1

]
A2 =

[−0.5 4 0
0 0.6 0
6 0 0.8

]

A3 =

[ 0.3 −0.3 0
0 0.6 0

−0.3 0 0.9

]
A4 =

[ 0.6 −0.3 0
0.3 0.6 0
−0.6 0 0.9

]

B1 =

[1
0
1

]
B2 = B3 =

[1
1
1

]
B4 =

[2
2
0

]

C1 =
[
1 1 0
1 0 0

]
C2 =

[
1 0 0
0 1 0

]

C3 =
[
1 0 1
0 1 1

]
C4 =

[
1 0 1
0 1 1

]

D1 = D2 = D3 = D4 =
[
1
0

]
For illustrative purposes of the individual algorithmic
aspects we first use the model without noise (Ni =
0,Mi = 0). However, the final analysis is conducted with
non-zero bounded noise.

3. HYBRID ESTIMATION

Hybrid estimation reconstructs the mode of operation and
its associated continuous state at each time-step k :

Hybrid Estimation Problem: Given a hybrid model
S, the discrete-time sequence of noisy (continuous) obser-
vations {y1, . . . , yk}, the sequence of observable events
{e0, . . . , ek} and the actuated control inputs {u0, . . . ,uk},
estimate the hybrid state that is comprised of the mode of
operation qi ∈ Q and the continuous state xk for time-step
k.
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We cannot fully observe the mode evolution of the au-
tomaton, nor do we usually know the initial mode exactly
(Q0 ⊂ Q is not necessarily a singleton). As a consequence,
a hybrid estimator has to consider all possible evolutions
that are conform with the actuation and observations.

3.1 Suboptimal Hybrid Estimation

Early solutions to the hybrid estimation problem such as
the multi-model IMM algorithm (Blom and Bar-Shalom
[1988]) track hypotheses over a limited number of time-
steps only and merge the continuous estimates according
to a measure of likelihood. This likelihood is mostly drawn
from the continuous filters and expresses the level of
agreement between the estimate and the observations but
might also include prior transition probability information,
if available.

Our hybrid estimation algorithm (hME, see Hofbaur and
Williams [2004]) uses the likelihood measure to focus on
the set of most likely hypotheses. As a result, we obtain an
any-time any-space algorithm that uses a focused search
strategy to efficiently compute the leading hypotheses fil-
tering out the majority of hypotheses with low likelihood.

Even though we were able to show that our approach can
successfully handle systems with a large (l > 100,000)
number of modes, we can say that every additional method
to focus on possible hypotheses improves the estimation
result and, of course, reduces the associated computational
effort.

3.2 Mode Estimation through Parity-Space Methods

Our recent work on hybrid systems diagnosis (Bayoudh
et al. [2008b]) provides an alternative approach that, be-
cause we were mostly concerned about diagnosis, concen-
trates on the mode estimate only. It uses a parity-space
method that we extended to hybrid systems.

In a first step, we derive for every mode qi ∈ Q of the
hybrid system S a set of Analytical Redundancy Relations
(ARRs) that relate the continuous inputs uk−p, . . . ,uk

with the observable continuous outputs yk−p, . . . ,yk over
a time-window of length p + 1. Selecting p appropriately
(typically p ≤ nx) allows us to eliminate any dependencies
upon the system’s continuous state x. This standard
procedure from FDI Gertler [1991] can be summarized for
a particular mode qi of our hybrid system (2-3) as follows:

If we stack the input, output and noise according to

Uk := [uT
k−p, . . . ,u

T
k ]T , Yk := [yT

k−p, . . . ,y
T
k ]T ,

Vk := [vT
k−p, . . . ,vT

k ]T ,

we can re-write (2-3) and obtain for the continuous evolu-
tion in mode qi

Yk = Oixk−p + L(Ai,Bi,Ci,Di)Uk +

L(Ai,Ni,Ci,Mi)Vk, (4)
with the matrices

Oi :=

⎡
⎢⎢⎣

Ci

CiAi

...
CiA

p
i

⎤
⎥⎥⎦ (5)

and

L(A,B,C,D) :=

⎡
⎢⎢⎢⎢⎣

D 0 · · · 0

CB D
. . .

...
...

. . .
. . . 0

CAp−1B · · · CB D

⎤
⎥⎥⎥⎥⎦ . (6)

For a sufficiently large p, there always exists a matrix Ωi

that is orthogonal to the matrix Oi, i.e. ΩiOi = 0, so that
we can eliminate the state xk−p in (4) through left-hand
multiplication with Ωi. Hence, we can define the residual
vector

ri,k := ΩiYk − ΩiL(Ai,Bi,Ci,Di)Uk. (7)
In a noise-free environment we have to check the ARR
consistency simply through ri,k = [ri1,k, . . . , rimi,k]T = 0.
However, if we include bounded noise as in our model (2-
3) we can compute bounds εij on the individual residuals
rij,k through the matrix

W := ΩiL(Ai,Ni,Ci,Mi) (8)
that captures the influence of the disturbances within the
observation window of length p + 1.

With this information, we can write the consistency check

r̃ij,k :=
{

0 if |rij,k| ≤ εij

1 otherwise , j = 1, . . . , mi (9)

and obtain a boolean residual vector for mode qi at time-
step k as

r̃i,k := [r̃i1,k, . . . , r̃imi,k]T . (10)

To extend this rather standard ARR approach to multi-
mode systems, we proposed in (Bayoudh et al. [2008b]) to
use the residuals for all l = |Q| modes of the automaton
concurrently, i.e. we combine all l residual vectors to form

r̃k := [r̃T
1,k, . . . , r̃T

l,k]T (11)
We filter this vector to eliminate transients and obtain a
mode signature with dedicated zero elements for each mode
of operation. Additional discrete events ΣSig are then
generated upon signature changes that provide additional
evidence about mode transitions on the basis of the
continuous evolution. We now extend the discrete-event
system part of our hybrid automaton with the additional
events ΣSig and use this extended discrete-event system

M̃ := (Q, {Σ, ΣSig}, T, Q0) (12)
to derive a discrete event diagnoser (Sampath et al. [1995])
for our hybrid model. This diagnoser provides a mode
estimate that takes both, the discrete and continuous
evolution of the hybrid automaton into account. In Bay-
oudh et al. [2008a], we provided a detailed discussion on
hybrid systems diagnosability analysis on the basis of (12).
Figure 2 shows the associated architecture with the multi-
mode residual/signature generator, consecutive filtering to
deal with transients of the computed residuals rij,k and the
DES-diagnoser that provides the mode estimate.

4. HYBRID ESTIMATION THROUGH MODE-SET
FOCUSING

The mode set estimate from Section 3.2 is now used to
focus hybrid estimation from Section 3.1 which will then
provide the full hybrid estimate, i.e. the mode of operation
together with the continuous state estimate. Ideally, our
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Fig. 2. Hybrid Diagnosis Scheme

ARR-based mode estimator deduces a single mode esti-
mate for the current mode of operation/failure. In such
case, this mode can be simply used and the associated
continuous filter applied for state estimation. However,
uncertain initial mode information Q0 might require some
time until the mode estimator obtains enough evidence
through several signature changes to arrive at a unique
mode estimate. A limited amount of sensors may also
lead to reduced diagnosability so that the mode estimator
won’t be able to discriminate among several modes.This
discrimination problem applies to successive multi-model
filters or traditional hybrid estimators as well. This is
simply due to the fact that a well designed parity-space
diagnoser can always be replaced by a corresponding filter-
based diagnoser (Gertler [1991]). However, it is shown
further on that it is still worthwhile to assemble both in a
coherent architecture. Such a rather un-intuitive approach
will highly contribute to the estimation quality, both in
terms of prompt mode change identification and also in
terms of the estimation quality for the continuous state
estimate.

4.1 Mode-Change Detection and Identification

The residuals and the discrete events Σsig generated from
them can detect and identify previously unobservable
mode changes. Mode-change detection can be drawn from
abrupt residual changes almost instantly. Mode identifica-
tion, however, requires additional time. The residuals need
at least p time-steps to settle after a mode change since the
ARR constraint (7) assumes single-mode dynamics within
the observation window. Figure 3 shows the adaption pro-
cess for a mode transition q2 → q4 at time-step k = 180
with window-length p = 2 and filter length τfilter = 3.

The consecutive filter postpones the mode identification
additionally for another τf time-steps (we used τf = nx

in our example). A single continuous filter would thus
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Fig. 4. Continuous state deviation due to the mode iden-
tification delay for a mode change q2 → q4

estimate at the old mode of operation during this period
of length (p + τf )Ts. This can cause a dramatic increase
of the estimation error for the continuous state. As a
consequence, the filter needs additional time to adapt the
continuous state once the mode estimator identifies the
correct mode. In our example (see Fig. 4), the error is
dramatically big around t = 1.82s as the estimation of xc1

drops down below −600, whereas the actual state is around
xc1 ≈ −4 (see also Figure 5, solid line). At time-step
t = 1.85s the residuals are settled and the continuous state
is estimated using the filter for mode q4. Still, the filter
needs another 6 time-steps until the continuous estimate
complies with the actual state of the system.

4.2 Mode-Set Estimation

One way to reduce the mode identification delay would
be to use shorter observation windows p < nx whenever
one has more than one measurement (ny > 1). However,
this might lead to diagnosability problems since mode sig-
natures are not necessarily distinct anymore. Our example
provides equivalent signatures for mode q3 and q4 for p = 1
(Bayoudh et al. [2008b]). As a consequence, we obtain a
mode set Q̄k ⊂ Q as mode estimate at time-step k. The
idea is to leave the final decision about mode consistency to
the consecutive multi-mode/hybrid estimator, for example
our hME algorithm, that also provides the associated
continuous state estimate. The focused mode set highly
contributes to the computational effort of the consecutive
estimator.

4.3 Mode-set focused Hybrid Estimation

A careful interaction between the ARR-based mode esti-
mator and a successive hybrid estimator can significantly
contribute to the overall hybrid estimation quality. In
particular at time-steps in the vicinity of mode changes.
As mentioned before, we can detect mode changes almost
immediately, whereas the mode estimator settles upon the
mode of operation after several time steps only. Thus,
the mode estimator can withdraw its predicted mode or
mode-set upon mode-change detection. This allows the
hybrid estimator to consider every possible hypothesis
starting from the previous, possibly unique, estimate. The
consequence is twofold:

• continuous state estimates for all hypotheses under
consideration with their associated likelihood values
are immediately obtained. Likelihoods allow us to
indicate the most likely estimation hypothesis and
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thus possibly identify the mode of operation even
before the mode estimator provides new evidence as
well.

• the adaptation delay of the continuous estimate that
we saw earlier is avoided by tracking multiple hy-
potheses. The mode estimator simply provides addi-
tional evidence that allows the hybrid estimator to
focus upon the correct estimation hypothesis, thus
it immediately provides the correct continuous esti-
mate!

Figure 5 shows this improved estimation result for the
mode transition that was previously analysed in Figure 4.
The continuous estimate focused hME xc1 (dotted line)
follows the actual behavior of the system xc1(continuous
line) immediately (graphs are superposed).

Of course, an analogous interaction can be used when-
ever the mode estimator settles upon a focused set of
modes. This additional evidence can easily be included in
the multi-mode estimation scheme as additional focusing
method that contributes to the estimation quality but
also reduces the computational effort that is necessary for
hybrid estimation.

5. EXAMPLE CONT.

For our final experiments we considered the example of
Section 2.1 with four modes of operation and a sampling
period of Ts = 0.01s. To fully demonstrate our improved
algorithm our example is now supplemented with addi-
tional noise that acts through

Ni =

[0.025 0 0 0 0
0 0.025 0 0 0
0 0 0.025 0 0

]
, i = 1, . . . , 4

Mi =
[
0 0 0 0.025 0
0 0 0 0 0.025

]
, i = 1, . . . , 4 .

To point out the improvements of our new hybrid estima-
tion scheme in correctly estimating both the continuous
and the discrete behavior of the system, we performed
several test-runs defining mode sequences for the system
under consideration and compared the estimation results
to the output of an ARR based approach with a window-
length of p = 2 and τf = 3 and a Rao-Backwellised Particle
Filter with n = 1000 particles.

Figure 6 shows an exemplary mode trace with the asso-
ciated mode estimates of our focused hybrid estimation
(fhe) in comparison to the pure ARR-based mode estima-
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tor (a) and the Rao-Backwellised Particle Filter (b). In
this experiment, we start with the initial state Q0 = q1

and command the system to follow the discrete trajectory
(time in s):

q2q1 q3q4

uo1 uo5uo4
q4

o1
q3

o1
q2

uo3

t = 0.51 t = 1.81 t = 2.61 t = 4.51 t = 5.01 t = 5.80

Our focused hybrid estimation approach follows the mode
changes of the plant within a delay of at most one time-
step, whereas the ARR approach needs p + τf = 5 time-
steps to identify the correct mode. The RBPF reacts to
a mode change immediately, however it is not always
able to discriminate between mode 3 and mode 4. The
result of this behavior is again a considerable increase of
the estimation error while the estimator is presuming the
wrong mode. In Figure 7 a detail of the appropriate state
estimates of the continuous state x3 before and after a
transition from mode q3 to q4 is depicted. Our approach
identifies the correct mode one step after the transition
takes place at t = 4.52 and the continuous estimate follows
the plant immediately.

6. CONCLUSION

A novel scheme for hybrid estimation that de-couples
mode and continuous state estimation through performing
two redundant schemes is demonstrated. It is based on
a parity-space based estimation for mode estimation and
a consecutive multi-model filter based continuous estima-
tion. This approach enables us to detect and identify mode
changes / faults in the system with small delays and to
focus the computationally complex hybrid filtering task
onto few estimation hypotheses. The assessment of how
well this algorithm performs compared to existing methods
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(Rao-Backwellised KF (RBPF), standard IMM and hME
without ARR based focusing) remains to be done through
empirical testing on a set of case studies.

Hybrid systems with many modes require a slightly mod-
ified approach since it is difficult to compute the full
signature that contains all modes at all time-steps. We
are currently investigating approaches where we compute
filters and ARRs on demand, similar to our on-line fil-
ter decomposition and deduction scheme (Hofbaur and
Williams [2004]), and use partial signatures to guide the
mode estimation. Another line of research investigates a
distributed version of our hybrid estimator where several
estimators work concurrently and cooperatively on the
hybrid estimation task for complex multi-component sys-
tems.

Our ultimate goal is to provide a good hybrid estimate for
the system. Sometimes, however, it can be possible that
the current operation of an artifact does not reveal enough
information so that an estimator can discriminate among
several estimation candidates (e.g. due to insufficient ex-
citation whenever it operates at a specific operational
mode/point). As a consequence, it is important for us to
develop a technique that can maintain several estimation
hypotheses, both in terms of the discrete (mode) estimate
and the continuous state estimate. In order to refine the
estimate, one has to actively excite the system in a manner
that satisfies the operational goal but also that reveals
enough information to guide the mode discrimination. In
Bayoudh et al. [2008c] it was shown that the discrete event
diagnoser of our proposed parity-space diagnosis technique
provides the essential basis to guide active hybrid diagnosis
among the modes of operation. The supplemented continu-
ous estimation scheme and its interaction with the parity-
space diagnoser that we propose in this paper provides the
other ingredient, the associated continuous state estimate,
so that an active hybrid diagnoser can compute a suitable
combined continuous/discrete actuation that leads to an
un-ambiguous diagnosis/estimation for the system whilst
as well maintaining at best its operational goal.
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